

Federal Funding for High End Computing (HEC) Birds Of a Feather

November 19, 2002

National Institute of Standards and Technology

Judith E. Devaney
Leader, Scientific Applications and Visualization Group
Mathematical and Computational Sciences Division
Information Technology Laboratory

Some HEC work going on at NIST in the Mathematical and Computational Sciences Division

Parallel Adaptive Multigrid: http://math.nist.gov/phaml/

Java Numerics: http://math.nist.gov/javanumerics/

Screen Saver Science: http://math.nist.gov/mcsd/savg/parallel/screen/

Modeling Fluid Flow in Complex Geometries with Parallel Lattice Boltzmann:

http://math.nist.gov/mcsd/savg/parallel/lb/

Modeling High Performance Concrete with Parallel Dissipative Dynamics:

http://math.nist.gov/mcsd/savg/parallel/dpd/

Interoperable MPI: http://impi.nist.gov/

MPI Data Structures: http://math.nist.gov/mcsd/savg/auto/

Computation of Atomic Properties with the Parallel Hy-CI Method:

http://math.nist.gov/mcsd/savg/parallel/atomic/

Nanostructure Modeling: http://math.nist.gov/mcsd/savg/parallel/nano/

Computation of X-Ray Absorption with Parallel Feff: http://math.nist.gov/mcsd/savg/parallel/xray/

Dielectric Breakdown: http://math.nist.gov/mcsd/savg/parallel/dielectric/

Modeling Dendritic Growth in Metallic Alloys with the Parallel Phase Field Method:

http://math.nist.gov/mcsd/savg/parallel/pfm/

Immersive Scientific Visualization: http://math.nist.gov/mcsd/savg/vis/

Parallel Genetic Programming: http://math.nist.gov/mcsd/savg/datamine/geneticprogramming/

Others...

NIST Funding is though the Advanced Technology Program (ATP)

ATP Mission:

To accelerate the development of innovative technologies for broad national benefit through partnerships with the private sector

ATP

- ATP is open to companies of all sizes
- ATP funding is available to all technologies
- ATP requires cost-sharing commitment to commercialization

As a Single Company:

- For-profit company
- 3-year time limit
- \$2M award cap
- Company pays indirect costs
- Large companies cost share at least 60% of total project cost

As a Joint Venture:

- At least 2 for-profit companies
- 5-year time limit
- No limit on award amount (other than availability of funds)
- Industry share >50% total cost
- ATP encourages teaming arrangements
- ☐ Most projects involve alliances

ATP: Two Major Criteria

- Scientific and Technological Merit (50%)
 - Technical Rationale
 - ✓ high technical risk & feasibility
 - ✓ technological innovation
 - R&D Plan
- Potential for Broad-Based Economic Benefits (50%)
 - National Economic Benefits
 - Need for ATP Funding
 - Pathway to Economic Benefits

For Info on ATP and to Join the ATP Mailing List . . .

• Call toll-free:

800-ATP-FUND

(800-287-3863)

Fax your name and

address to:

301-926-9524

• Send e-mail to:

atp@nist.gov

• Visit ATP's website:

www.atp.nist.gov